Larval insects use many methods for locomotion. Here we describe a previously unknown jumping behavior in a group of beetle larvae (Coleoptera: Laemophloeidae). We analyze and describe this behavior in Laemophloeus biguttatus and provide information on similar observations for another laemophloeid species, Placonotus testaceus. Laemophloeus biguttatus larvae precede jumps by arching their body while gripping the substrate with their legs over a period of 0.22 ± 0.17s. This is followed by a rapid ventral curling of the body after the larvae releases its grip that launches them into the air. Larvae reached takeoff velocities of 0.47 ± 0.15 m s-1 and traveled 11.2 ± 2.8 mm (1.98 ± 0.8 body lengths) horizontally and 7.9 ± 4.3 mm (1.5 ± 0.9 body lengths) vertically during their jumps. Conservative estimates of power output revealed that some but not all jumps can be explained by direct muscle power alone, suggesting Laemophloeus biguttatus may use a latch-mediated spring actuation mechanism (LaMSA) in which interaction between the larvae's legs and the substrate serves as the latch. MicroCT scans and SEM imaging of larvae did not reveal any notable modifications that would aid in jumping. Although more in-depth experiments could not be performed to test hypotheses on the function of these jumps, we posit that this behavior is used for rapid locomotion which is energetically more efficient than crawling the same distance to disperse from their ephemeral habitat. We also summarize and discuss jumping behaviors among insect larvae for additional context of this behavior in laemophloeid beetles.
Read full abstract