Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis.