In this paper, a state estimation method of distributed electric drive articulated vehicle dynamics parameters based on the forgetting factor unscented Kalman filter with singular value decomposition (SVD-UKF) is proposed. The 7DOF nonlinear dynamics model of a distributed electric drive articulated vehicle is established. The unscented Kalman filter algorithm is the foundation, with singular value decomposition replacing the Cholesky decomposition. A forgetting factor is introduced to dynamically adapt the observation noise covariance matrix in real time, resulting in a centralized parameter state estimator for the articulated vehicle. The proposed parameter state estimation method based on the forgetting factor SVD-UKF is simulated and compared with the unscented Kalman filter (UKF) estimation method. Key dynamic parameters are estimated, such as the lateral and longitudinal velocities and accelerations, angular velocity, articulated angle, wheel speeds, and longitudinal and lateral tire forces of both the front and rear vehicle bodies. The results show that the proposed forgetting factor SVD-UKF method outperforms the traditional UKF method. Furthermore, a prototype vehicle test is conducted to compare the estimated values of various dynamic parameters with the actual values, demonstrating minimal errors. This verifies the effectiveness of the proposed dynamic parameter estimation method for articulated vehicles.
Read full abstract