Digital simulation in dental education has substantially evolved, addressing several educational challenges in dentistry. Following global lockdowns and sustainability concerns, dental educators are increasingly adopting digital simulation to enhance or replace traditional training methods. This review aimed to contribute to a uniform taxonomy for extended reality (XR) simulation within dental education. This scoping review followed the PRISMA and PRISMA-ScR guidelines. PubMed/MEDLINE, EMBASE, Web of Science and Google Scholar were searched. Eligible studies included English-written publications in indexed journals related to digital simulation in dental/maxillofacial education, providing theoretical descriptions of extended reality (XR) and/or immersive training tools (ITT). The outcomes of the scoping review were used as building blocks for a uniform of XR-simulation taxonomy. A total of 141 articles from 2004 to 2024 were selected and categorised into Virtual Reality (VR), Mixed Reality (MR), Augmented Reality (AR), Augmented Virtuality (AV) and Computer Simulation (CS). Stereoscopic vision, immersion, interaction, modification and haptic feedback were identified as recurring features across XR-simulation in dentistry. These features formed the basis for a general XR-simulation taxonomy. While XR-simulation features were consistent in the literature, the variety of definitions and classifications complicated the development of a taxonomy framework. VR was frequently used as an umbrella term. To address this, operational definitions were proposed for each category within the virtuality continuum, clarifying distinctions and commonalities. This scoping review highlights the need for a uniform taxonomy in XR simulation within dental education. Establishing a consensus on XR-related terminology and definitions facilitates future research, allowing clear evidence reporting and analysis. The proposed taxonomy may also be of use for medical education, promoting alignment and the creation of a comprehensive body of evidence in XR technologies.
Read full abstract