Abstract
AbstractTOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion‐wave characteristics, depth‐dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short‐Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (R2) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.