Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers. Sourced luffa fibers were made into tight rolls and stacked in a filtration column to filter the effluent. The analysis showed that the alkali-treated luffa fiber rolls were more effective in filtering the microfibers than untreated luffa fibers. Hence, the alkali treatment process was optimized for better performance; an alkali concentration of 5.8%, treatment time of 5h, and 37°C temperature provide better performance. The characterization of alkali-treated luffa fibers showed significant changes in the morphology and removal of lignin and hemicellulose components, enhancing the physical adsorption of microfibers on the surface. The experimental filtration results showed that the developed filter can effectively remove up to 93% of microfibers from laundry effluent, and the efficiency remained superior for up to 15 filtrations. Furthermore, an increase in filtration leads to the accumulation of detergents in the luffa net-like vascular structure and reduced effectiveness. The use of the developed product in a real-time washing machine outlet was found to be effective with an efficiency of 98%. The developed product is a versatile and cost-effective solution, suitable for use in domestic washing machines. Its simplicity and ease of integration make it an effective and eco-friendly alternative for filtering microfibers from laundry effluent. The future direction of the study also suggests a sustainable disposal method for luffa fibers using it as a matrix material in red soil-based thermal or sound insulation panels and restricting the reach of microfibers into the environment.
Read full abstract