The COVID-19 viral disease surfaced at the end of 2019 and quickly spread across the globe. To rapidly respond to this pandemic and offer data support for various communities (e.g., decision-makers in health departments and governments, researchers in academia, public citizens), the National Science Foundation (NSF) spatiotemporal innovation center constructed a spatiotemporal platform with various task forces including international researchers and implementation strategies. Compared to similar platforms that only offer viral and health data, this platform views virus-related environmental data collection (EDC) an important component for the geospatial analysis of the pandemic. The EDC contains environmental factors either proven or with potential to influence the spread of COVID-19 and virulence or influence the impact of the pandemic on human health (e.g., temperature, humidity, precipitation, air quality index and pollutants, nighttime light (NTL)). In this platform/framework, environmental data are processed and organized across multiple spatiotemporal scales for a variety of applications (e.g., global mapping of daily temperature, humidity, precipitation, correlation of the pandemic to the mean values of climate and weather factors by city). This paper introduces the raw input data, construction and metadata of reprocessed data, and data storage, as well as the sharing and quality control methodologies of the COVID-19 related environmental data collection.