Antimicrobial peptides from Streptomyces sp. and marine fish (Carangoides malabaricus) were extracted and developed as conjugates in the present study. The objective was framed to analyze the ability of conjugate to retard the growth of test bacteria causing diabetic foot ulcers. Fibroblast cell adhesion on AMP conjugates coated mesh samples were recorded using microscopic studies with an aim of developing a novel tissue engineered wound dressing material. Thus developed tissue engineered materials were evaluated for its antibacterial potential against wound pathogens; and to assay the wound healing ability using a standard in vitro wound scratch method. Tissue engineered materials were developed using L929 fibroblast cells. L929 fibroblast cells attachment and its stage wise development on wound dressing mesh materials were microscopically observed. In vitro wound healing assay revealed that the developed conjugates (containing AMPs) exhibited cell migration and proliferation after 12th hour of incubation indicating the wound healing abilities. The results showed that the developed tissue engineered wound dressing material has commercial interest in near future.