To address the issue of detecting complex-shaped cracks that rely on manual, which may result in high costs and low efficiency, this paper proposed a lightweight ground crack rapid detection method based on semantic enhancement. Firstly, the introduction of the Context Guided Block module enhanced the YOLOv8 backbone network, improving its feature extraction capability. Next, the incorporation of GSConv and VoV-GSCSP was introduced to construct a lightweight yet efficient neck network, facilitating the effective fusion of information from multiple feature maps. Finally, the detection head achieved more precise target localization by optimizing the probability around the labels. The proposed method was validated through experiments on the public dataset RDD-2022. The experimental results demonstrate that our method effectively detects cracks. Compared to YOLOv8, the model parameters have been reduced by 73.5 %, while accuracy, F1 score, and FPS have improved by 6.6 %, 4.3 %, and 116, respectively. Therefore, our proposed method is more lightweight and holds significant application value.
Read full abstract