With the widespread application of unmanned aerial vehicles (UAV) in surveying, disaster search and rescue, agricultural spraying, war reconnaissance, and other fields, coverage path planning is one of the most important problems to be explored. In this paper, a large-area coverage path planning (CCP) method based on vehicle–UAV collaboration is proposed. The core idea of the proposed method is adopting a divide-and conquer-strategy to divide a large area into small areas, and then completing efficient coverage scanning tasks through the collaborative cooperation of vehicles and UAVs. The supply points are generated and adjusted based on the construction of regular hexagons and a Voronoi diagram, and the segmentation and adjustment of sub-areas are also achieved during this procedure. The vehicle paths are constructed based on the classical ant colony optimization algorithm, providing an efficient way to traverse all supply points within the coverage area. The classic zigzag CCP method is adopted to fill the contours of each sub-area, and the UAV paths collaborate with vehicle supply points using few switching points. The simulation experiments verify the effectiveness and feasibility of the proposed vehicle–UAV collaboration CCP method, and two comparative experiments demonstrate that the proposed method excels at large-scale CCP scenarios, and achieves a significant improvement in coverage efficiency.
Read full abstract