Computer aided diagnosis (CAD) systems are important in obtaining precision medicine and patient driven solutions for various diseases. One of the main brain tumor is the Glioblastoma multiforme (GBM) and histopathological tissue images can provide unique insights into identifying and grading disease stages. In this study, we consider nuclei segmentation method, feature extraction and disease stage classification for brain tumor histopathological images using automatic image analysis methods. In particular we utilized automatic nuclei segmentation and labeling for histopathology image data obtained from The Cancer Genome Atlas (TCGA) and check for significance of feature descriptors using K-S test and classification accuracy using support vector machine (SVM) and Random Forests (RF). Our results indicate that we obtain classification accuracy 98.6% and 99.8% in the case of Object-Level features and 82.1% and 86.1% in the case of Spatial Arrangement features, respectively.