The current Internet of Vehicles (IoV) faces significant challenges related to resource heterogeneity, which adversely impacts the convergence speed and accuracy of federated learning models. Existing studies have not adequately addressed the problem of resource-constrained vehicles that slow down the federated learning process particularly under conditions of high mobility. To tackle this issue, we propose a model partition collaborative training mechanism that decomposes training tasks for resource-constrained vehicles while retaining the original data locally. By offloading complex computational tasks to nearby service vehicles, this approach effectively accelerates the slow training speed of resource-limited vehicles. Additionally, we introduce an optimal matching method for collaborative service vehicles. By analyzing common paths and time delays, we match service vehicles with similar routes and superior performance within mobile service vehicle clusters to provide effective collaborative training services. This method maximizes training efficiency and mitigates the negative effects of vehicle mobility on collaborative training. Simulation experiments demonstrate that compared to benchmark methods, our approach reduces the impact of mobility on collaboration, achieving large improvements in the training speed and the convergence time of federated learning.
Read full abstract