Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD. Gene therapy based on novel approaches will possess more potential advantages over the conventional methods. Currently, gene therapy for such disorders is still under the process of clinical trials and approval. The pathogenesis comes from the breakdown of dopaminergic neurons within substantia nigra (SN) by the action of tyrosinase enzyme and subsequent accumulation of α-synuclein within the neurons. These dopaminergic neurons are the main source of dopamine, the decline of which is responsible for the symptoms. So, gene therapy can possibly provide more stable supplementation and regulate the expression of tyrosinase enzyme, providing better symptomatic relief and lesser side effects. Dopamine replacement therapy is a wellstudied gene therapy method for PD. Another approach involves introducing functional genes for enzymes such as tyrosine hydroxylase, cyclohydrolases, and decarboxylases with the help of engineered vectors such as AAV and LV. Further, the potential application of nanoparticles in gene therapy as an efficient gene delivery and imaging system has been discussed. Among these, lipidbased nanoparticles such as PILs offer important benefits in terms of enhanced bioavailability, permeability to the cells, and solubility. So, this review paper summarizes some of the advanced gene therapy approaches for PD and the current status of clinical research in the development of gene therapy using nanoparticles.
Read full abstract