This paper reports the sorption and diffusion characteristics of methanol vapor in polyethylene terephthalate (PET). Amorphous PET, semicrystalline, biaxially oriented annealed and non-annealed samples have been studied for equilibrium sorption and kinetics of methanol. At activities of methanol less than 0.30, uptake shows Fickian kinetics and isotherm follows the Dual Mode model. Diffusion coefficients increase with penetrant concentration and are of the order of 10−10cm2/s. Hysteresis during desorption and increase in solubility during resorption suggest methanol induced conditioning effects which may have detrimental effects on the barrier efficacy of PET. At activities greater than 0.30, swelling and relaxation effects occur and the isotherms show Flory–Huggins behavior for all three samples. Uptake follows two-stage kinetics fit by the Berens–Hopfenberg model. Greater polymer chain stability due to annealing reduces the extent of relaxation and improves the barrier efficacy over amorphous and non-annealed, oriented PET. For amorphous PET, at 80% activity and above, an induction time is observed which is absent in the semicrystalline films, suggesting strong relaxation effects in the amorphous phase of PET.
Read full abstract