The study focused on the prediction of the Temperature Vegetation Dryness Index (TVDI), an agricultural drought index, for a Mango orchard in Tamale, Ghana. It investigated the temporal relationship between the meteorological drought index, Standardized Precipitation Index (SPI), and TVDI. The SPI was calculated based on utilizing precipitation data from the World Meteorological Organization (WMO) database (2010–2022) and CMIP6 projected precipitation data (2023–2050) from 35 climate models representing various Shared Socioeconomic Pathway (SSP) climate change scenarios. Concurrently, TVDI was derived from Landsat 8/9 satellite imagery, validated using thermal data obtained from unmanned aerial vehicle (UAV) surveys. A comprehensive cross-correlation analysis between TVDI and SPI was conducted to identify lag times between these indices. Building on this temporal relationship, the TVDI was modeled as a function of SPI, with varying lag times as inputs to the Wavelet-Adaptive Neuro-Fuzzy Inference System (Wavelet-ANFIS). This innovative approach facilitated robust predictions of TVDI as an agricultural drought index, specifically relying on SPI as a predictor of meteorological drought occurrences for the years 2023–2050. The research outcome provides practical insights into the dynamic nature of drought conditions in the Tamale mango orchard region. The results indicate significant water stress projected for different time frames: 186 months for SSP126, 183 months for SSP245, and 179 months for both SSP370 and SSP585. This corresponds to a range of 55–57% of the projected months. These insights are crucial for formulating proactive and sustainable strategies for agricultural practices. For instance, implementing supplemental irrigation systems or crop adaptations can be effective measures. The anticipated outcomes contribute to a nuanced understanding of drought impacts, facilitating informed decision-making for agricultural planning and resource allocation.
Read full abstract