High-resolution and high-quality precipitation data play an important role in Numerical Weather Prediction Model testing, mountain flood geological disaster monitoring, hydrological monitoring and prediction and have become an urgent need for the development of modern meteorological business. The 0.01° multi-source fusion precipitation product is the latest precipitation product developed by the National Meteorological Information Center to meet the above needs. Taking the hourly precipitation observation data of 2400 national automatic stations as the evaluation base, independent and non-independent test methods are used to evaluate the 0.01° multi-source fusion precipitation product in 2020. The product quality differences between the 0.01° precipitation product and the 0.05° precipitation product are compared, and their application in extreme precipitation events are analyzed. The results show that, in the independent test, the product quality of the 0.01° precipitation product and the 0.05° precipitation product are basically the same, which is better than that of each single input data source, and the product quality in winter and spring is slightly lower than that in summer, and both products have better quality in the east in China. The evaluation results of the 0.01° precipitation product in the non-independent test are far better than that of the 0.05° product. The root mean square error and the correlation coefficient of the 0.01° multi-source fusion precipitation product are 0.169 mm/h and 0.995, respectively. In the extreme precipitation case analysis, the 0.01° precipitation product, which is more consistent with the station observation values, effectively improves the problem that the extreme value of the 0.05° product is lower than that of station observation values and greatly improves the accuracy of the precipitation extreme value in the product. The 0.01° multi-source fusion precipitation product has better spatial continuity, a more detailed description of precipitation spatial distribution and a more accurate reflection of precipitation extreme values, which will better provide precipitation data support for refined meteorological services, major activity support, disaster prevention and reduction, etc.
Read full abstract