Acting as an extremely promising fungal pesticide, Metarhizium rileyi exhibits robust insecticidal activity against Lepidoptera pests, particularly the larvae. Though there is a slight delay in efficacy, biopesticides offer salient advantages over traditional chemical pesticide especially in environmental safety, cyclic infection and resistant inhibition. In this study, an exterior T-DNA was randomly inserted into the genome of M. rileyi, resulting in the acquisition of a mutant strain that displayed a colour transition from green to yellow within its conidia. The disruption of Mrlac1, a laccase, has been confirmed to attribute to the epigenetic alterations. Mrlac1 is a secreted protein harboring an N-terminal signaling peptide that undergoes in vivo synthesis and accumulates on the cell wall of M. rileyi. Targeted knock-out mutant exhibited alterations not just in conidia coloration, but significantly diminished capacity to withstand external stressors, particularly non-biological factors such as high humidity, Congo red exposure, and UV radiation. The disruptant suffered a constraint on hyphal polar growth, alteration in conidial surface structure, as well as noticeable increase in adhesion forces between conidia, the core infection factors. There is a remarkable diminution in virulence of Mrlac1 deletion variant against larvae of Spodoptera litura by topical inoculation, but not hemolymph injection. Our findings suggest that Mrlac1 acts as a positive regulator in the normal morphogenesis of fungal conidia, encompassing pigment production, inter-conidia adhesion, and conidial cell wall integrity, while the preservation of these structures holds paramount importance for the survival and infection of M. rileyi in the field.