Abstract
Catalases play a crucial role in the metabolism of reactive oxygen species (ROS) by converting H2O2 into molecular oxygen and water. They also contribute to virulence and fungal responses to various stresses. Previously, the MrCat1-deletion mutant (ΔMrCat1) was generated using the split-marker method in Metarhizium rileyi. In this study, the Cat1 gene was identified, and its function was evaluated. Under normal culture conditions, there were no significant differences in colony growth or dimorphic switching between ΔMrCat1 and the wild-type (WT) strains. However, under oxidative stress, the colony growth was inhibited, and the yeast-hyphal transition was suppressed in the ΔMrCat1 strain. Hyperosmotic stress did not differ significantly between the two strains. In the ΔMrCat1 strain, microsclerotia (MS) formation was delayed, resulting in less uniform MS size and a 76% decrease in MS yield compared to the WT strain. Moreover, the ΔMrCat1 strain exhibited diminished virulence. Gene expression analysis revealed up-regulation of ΔMrCat1, MrCat2, MrCat4, and MrAox in the ΔMrCat1 strain. These findings indicate that the MrCat1 gene in M. rileyi is essential for oxidative stress tolerance, MS formation, and virulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.