With the wide application of phthalic acid esters (PAEs) in the manufacturing of plastic products, a large number of PAEs were discharged into marine ecosystem and accumulated in fish, which has posed a serious threat to marine ecological environment and fishery resources. However, the bioaccumulation of PAEs in fish in mangrove ecosystem, the most productive marine ecosystem, has not been well characterized. In this study, dominant fish and their potential food sources (including particulate organic matter (POM), sedimentary organic matter (SOM), Metapenaeus ensis (Shrimp) and Oreochromis (Ore) were collected from Dongzhai Harbor, a typical mangrove ecosystem. The concentrations of nine PAEs in fish and their potential food sources were determined. Then stable nitrogen and carbon isotope analysis, combined with a new Bayesian mixing model (MixSIMMR) was used to quantify the diet compositions of fish and elucidate the effect of dietary habit on PAEs bioaccumulation in fish. The results indicated that the median concentration of ∑9PAEs in fish was 1119 μg/kg ww, positioning it at a moderate to low level in comparison to other regions. di-n-butyl phthalate (DBP) and diisononyl ortho-phthalate (DINP) were the dominant PAEs in fish. The PAEs concentration in demersal fish was significantly higher than that of pelagic fish, which may be attributed to the substantial contributions of shrimp (28.5 %) and POM (25.3 %) to the diet of demersal fish. This study provided new insights on the bioaccumulation of PAEs in dominant mangrove fish and confirmed that habitat preferences and food sources could significantly influence the bioaccumulation of PAEs in fish.
Read full abstract