AbstractWe present a comprehensive petrological and geochronological study of a single granulite sample from the lithosphere‐scale Beraketa shear zone in southern Madagascar to constrain the orogenic history of Gondwana assembly in this region. The studied sample provides a panoply of data constraining the prograde, retrograde, and late metasomatic history of the region via the application of Ti‐in‐quartz, Ti‐in‐zircon, Zr‐in‐rutile, and Al‐in‐orthopyroxene thermobarometry; phase‐equilibrium modelling; U–Pb monazite, zircon, and rutile petrochronology; and trace element diffusion chronometry in rutile. Our results reveal five stages of metamorphism along a narrow clockwise P–T path that may have begun as early as 620–600 Ma and certainly by 580–560 Ma, based on the oldest concordant zircon dates. The rock was heated to >725°C at less than 7.5 kbar (Stage 1) before burial to ~8 kbar (Stage 2). By c. 540 Ma, the rock had heated to ~970°C at ~9 kbar, and lost approximately 12% melt (Stage 3), before decompressing and cooling to the solidus at ~860°C and 6.5 kbar within 10 Ma (Stage 4). The vast majority of monazite and zircon dates record Stage 4 cooling and exhumation. Monazite and zircon rim dates as young as c. 510 Ma record subsolidus cooling (Stage 5) and associated symplectite formation around garnet. U–Pb rutile dates record partial resetting at c. 460 Ma; Zr‐ and Nb‐in‐rutile diffusion chronometry link these dates to a metasomatic event that lasted <1 Ma at ~600°C. In addition to chronicling a near‐complete cycle of metamorphism in southern Madagascar, this study constrains the rates of heating and cooling. We estimate that heating (7–14°C/Ma) outpaced reasonable radiogenic heating rates with modest mantle heat conduction. Therefore, we conclude that elevated mantle heat conduction or injection of mantle‐derived magmas likely contributed to regional ultrahigh‐temperature metamorphism (UHTM). Exhumation and cooling from peak metamorphic conditions to the solidus occurred at rates greater than 0.45 km/Ma and 14°C/Ma.
Read full abstract