Magnetic resonance imaging (MRI) relies on high-performance receive coils to achieve optimal signal-to-noise ratio (SNR), but conventional designs are often bulky and complex. Recent advancements in metamaterial technology have led to the development of metamaterial-inspired receive coils that enhance imaging capabilities and offer design flexibility. However, these configurations typically face challenges related to reduced adaptability and increased physical footprint. This study introduces a hybrid receive coil design that integrates an array of capacitively-loaded ring resonators directly onto the same plane as the coil, preserving its 2D layout without increasing its size. Both the coil and metamaterial are individually non-resonant at the targeted Larmor frequency, but their mutual coupling induces a resonance shift, achieving a frequency match and forming a hybrid structure with enhanced SNR. Experimental validation on a 3.0 T MRI platform shows that this design allows for adjustable trade-offs between peak SNR and penetration depth, making it adaptable for various clinical imaging scenarios.
Read full abstract