Elastic topological metamaterials are innovative fields of the fusion of physics and mechanics. Through novel microstructural designs, elastic topological metamaterials provide a pioneering approach to precisely manipulate elastic waves, maintaining robustness and efficiency in wave propagation even within complex environments. Recent advancements in reconfigurability and gradient features have significantly enriched the mechanical phenomena of wave manipulation, broadening the application potential of elastic topological metamaterials. In this study, we design the local resonant phononic crystal, employing a spiral support structure to ensure low-frequency characteristics and adjustable mass for flexible configuration. By utilizing the designed lattices with distinct topological phases, the topological valley edge states are constructed. The frequency and group velocity variation of the topological edge states under different stiffness and mass parameters are analyzed. Furthermore, we further constructed the mass and stiffness gradient metamaterial to analyze the transmission law of elastic waves in topological metamaterials. Additionally, the fluctuation features of the wave transmittance under disordered and impurity defects were discussed, confirming the robustness of waveguides within low-frequency topological metamaterials. Finally, we explored the potential applications of the designed metamaterials in energy localization and low-frequency reconfigurable waveguides. Numerical analysis showed that the topological gradient metamaterials can enhance the vibration energy at a specific interface, and low-frequency bend waveguide paths can be adjusted flexibly by configurable mass. In summary, this paper focuses on the low-frequency and gradient features of elastic topological metamaterials, aiming to unlock their application potential in vibrational energy harvesting, vibration suppression, and information transmission, which accelerate the practical implementation of topological metamaterials.