Metal nitrogen carbon (MNC)-based Fenton reactions leveraged with robust peroxymonosulfate (PMS) interaction effectively guarantee the elimination of refractory contaminants, yet the precise design of local microenvironment of MNC to couple with the multiple PMS activation pose major challenges. Herein, a porous Co single-atom catalyst (SAC) with nitrogen defects (Nv) (MCo/NC-6) is fabricated to initiate PMS oxidation reaction. The weaker but richer coordination between Co and N in the precursor facilitates the formation of Nv and porous structure during pyrolysis, achieving simultaneously electronic structure and spatial distribution tuning. Compared with the Co SAC (ZCo/NC-6), the optimized MCo/NC-6 significantly increase the bisphenol A (BPA) reactivity (k = 0.63 min-1), PMS utilization (78%), and singlet oxygen (1O2) yield (100%) by 15.3, 2.4, and 2.6 times, respectively. Experimental analyses and theoretical calculations reveal that the Co─N─C coordination regulated by both micro space and neighboring Nv is endowed high-mobility electrons, thus synergistically facilitating rapid generation and efficient utilization of 1O2. This work promises new opportunities for the design of local microenvironments-regulated SACs, and charts new trajectories in complex Fenton-like systems.