Abstract

Transition metal-nitrogen-carbon (M-N-C) catalysts have emerged as promising candidates for electrocatalytic CO2 reduction reaction (CO2RR) due to their uniform active sites and high atomic utilization rate. However, poor efficiency at low overpotentials and unclear reaction mechanisms limit the application of M-N-C catalysts. In this study, Fe-N-C catalysts are developed by incorporating S atoms onto ordered hierarchical porous carbon substrates with a molecular iron thiophenoporphyrin. The well-prepared FeSNC catalyst exhibits superior CO2RR activity and stability, attributes to an optimized electronic environment, and enhances the adsorption of reaction intermediates. It displays the highest CO selectivity of 94.0% at -0.58V (versus the reversible hydrogen electrode (RHE)) and achieves the highest partial current density of 13.64mA cm-2 at -0.88V. Furthermore, when employed as the cathode in a Zn-CO2 battery, FeSNC achieves a high-power density of 1.19mW cm-2 and stable charge-discharge cycles. Density functional theory calculations demonstrate that the incorporation of S atoms into the hierarchical porous carbon substrate led to the iron center becoming more electron-rich, consequently improving the adsorption of the crucial reaction intermediate *COOH. This study underscores the significance of hierarchical porous structures and heteroatom doping for advancing electrocatalytic CO2RR and energy storage technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.