The development of a nickel composite membrane with acceptable hydrogen permselectivity at high temperature in a membrane reactor for the highly endothermic dry reforming of methane reaction was the purpose of this work. A thin, catalytically inactive nickel layer, deposited by electroless plating on asymmetric porous alumina, behaved simply as a selective hydrogen extractor, shifting the equilibrium in the direction of a higher hydrogen production and methane conversion. The main advantage of such a nickel/ceramic membrane reactor is the elimination or limitation of the side reverse water gas shift reaction. For a Ni/Al 2O 3 catalyst, containing free Ni particles, normally sensitive to coking, the use of the membrane reactor allowed an important reduction of carbon deposition (nanotubes) due to restriction of the Boudouard reaction. For a Ni–Co/Al 2O 3 catalyst, where the metallic nickel phase was stabilized by the alumina, the selective removal of the hydrogen significantly enhanced both methane conversion (+67% at 450 °C, +22% at 500 °C and +18% at 550 °C) and hydrogen production (+42% at 450 °C, +32% at 500 °C and +22% at 550 °C) compared to the results obtained for a packed-bed reactor. The hydrogen selectivity during the catalytic tests at 550 °C, maintained with constant separation factors (7 for H 2/CH 4, 8 for H 2/CO and 10 for H 2/CO 2), higher than Knudsen values, attested to the high thermal stability of the nickel composite membrane.
Read full abstract