Crofer 22 APU is ferritic stainless steel extensively used as metallic interconnect material in Solid Oxide Fuel Cell (SOFC) applications. The interconnects are exposed to both oxidizing and reducing atmospheres at high temperatures. As SOFCs are operated above 700 °C, understanding the thermal expansion behavior of the interconnect material with other components (anode, cathode, electrolyte) of the fuel cells is essential. Metallic interconnects should have a matchable thermal expansion to other ceramic materials such as anode, cathode, and solid electrolyte used in SOFCs. The present study evaluates the thermal expansion of Crofer 22 APU steel from 25 to 950 °C in a controlled atmosphere (10-4 mbar pressure) using in-situ high-temperature X-ray diffraction (XRD). The XRD patterns were analyzed using the ‘High Score Plus Software’ attached to the system, and the phases were identified using the standard Crystallographic Open Database (COD). The coefficient of thermal expansion (CTE) was determined based on the change in lattice parameter/peak shift to a lower 2θ value as a function of temperature. The normal XRD data showed no oxide formation on the Crofer steel after heating until 950 °C in in-situ high-temperature conditions.The peak shift to the lower 2θ degree observed in the XRD data was due to the relaxation of residual stress upon heating. The isothermal section and phase fraction of Crofer 22 APU alloys are analyzed with the help of thermo-calc with the iron database of TCFE7. The Fe-rich bcc phase was found to be stable up to high temperatures. The major phases are the Fe-rich bcc, Cr-rich BCC, and sigma phase in the solid state. The minor phases are FCC, M3P, TiC, Laves, and Ti4C2S2. The calculated lattice parameter of the Fe-rich BCC phase matches with the experimentally calculated data using XRD. The thermal expansion of Crofer 22 APU was found to be 11.9181 × 10-6 /°C at 950 °C. The in-situ high-temperature XRD technique has been an effective methodology for determining the thermal expansion behavior of the as-received Crofer steel.
Read full abstract