The hydrogenation of CO2 to methanol, which is restricted by water products, requires a selective removal of water from the reaction system. Here, we show that physically combining hydrophobic polydivinylbenzene with a copper catalyst supported by silica can increase methanol production and CO2 conversion. Mechanistic investigation reveals that the hydrophobic promoter could hinder the oxidation of copper surface by water, maintaining a small fraction of metallic copper species on the copper surface with abundant Cuδ+, resulting in high activity for the hydrogenation. Such a physically mixed catalyst survives the continuous test for 100h owing to the thermal stability of the polydivinylbenzene promoter.
Read full abstract