Abstract

The hydrogenation of CO2 to methanol, which is restricted by water products, requires a selective removal of water from the reaction system. Here, we show that physically combining hydrophobic polydivinylbenzene with a copper catalyst supported by silica can increase methanol production and CO2 conversion. Mechanistic investigation reveals that the hydrophobic promoter could hinder the oxidation of copper surface by water, maintaining a small fraction of metallic copper species on the copper surface with abundant Cuδ+, resulting in high activity for the hydrogenation. Such a physically mixed catalyst survives the continuous test for 100h owing to the thermal stability of the polydivinylbenzene promoter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.