As our previous works found, alkali metals have a common promotion effect on supported noble metals catalysts for formaldehyde (HCHO) oxidation. As second-group elements, alkaline earth metals (AEMs) are neighbors to the first-group elements and share some properties in common. However, detailed investigations into the specific mechanisms underlying AEMs’ effects on HCHO oxidation remain limited. In this study, we found that Ba addition showed a similar promotion effect on HCHO oxidation for Pd/TiO2. Ba species stabilized Pd groups, improved the dispersion, and even caused a large number of monatomic-like Pd sites to appear, which may be attributed to the electronic interaction between promoter and metal (EIPM) between Ba and Pd. Besides, AEM loading had the important effect of increasing the electron density of metallic Pd nanoparticles, which further improved the ability for O2 activation and so enhanced the mobility of chemisorbed oxygen on the catalyst surface. For Pd/TiO2, the HCHO oxidation path is mainly HCHO→HCOOH→HCOO→H2O+CO2. By contrast, for Pd-Ba/TiO2, with more surface-active species, the formate intermediate was more likely to be directly oxidized into H2O and CO2, which is a more effective reaction pathway. The details of the EIPM between Pd and Ba were investigated by GPAW (DFT calculation module) in ASE (Atomic Simulation Environment). The AEM Ba acted as an electron donor and could interact with Pd d orbital electrons through BaO sp orbital electrons. Ba species were highly dispersed on the carrier due to the Ba-Ti interaction. Ba species dispersed over large areas stabilized the Pd particles and donated electrons to Pd. Therefore, adding an AEM is an efficacious strategy to improve the performance of the catalytic oxidation of HCHO.
Read full abstract