ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules. Since 2010, heterogeneous FLP catalysts have gained increasing attention for their ability to enhance catalytic performance through tailored surface designs and improved recyclability, making them promising for industrial applications. Over the past 5 years, our group has focused on investigating and strategically modifying various types of solid catalysts with FLPs that are unique from classic solid FLPs. We have explored systematic characterization techniques to unravel the underlying mechanisms between the active sites and reactants. Additionally, we have demonstrated the critical role of catalysts' intrinsic electronic and geometric properties in promoting FLP formation and stimulating synergistic effects. The characterization of FLP catalysts has been greatly enhanced by the use of advanced techniques such as synchrotron X-ray diffraction, neutron powder diffraction, X-ray photoelectron spectroscopy, extended X-ray absorption fine structure, elemental mapping in scanning transmission electron microscopy, electron paramagnetic resonance spectroscopy, diffuse-reflectance infrared Fourier transform spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. These techniques have provided deeper insights into the structural and electronic properties of FLP systems for the future design of catalysts.Understanding electron distribution in the overlapping orbitals of LA and LB pairs is essential for inducing FLPs in operando in heterogeneous catalysts through target electron reallocation by external stimuli. For instance, in silicoaluminophosphate-type zeolites with weak orbital overlap, the adsorption of polar gas molecules leads to heterolytic cleavage of the Alδ+-Oδ- bond, creating unquenched LA-LB pairs. In a Ru-doped metal-organic framework, the Ru-N bond can be polarized through metal-ligand charge transfer under light, forming Ru+-N- pairs. This activation of FLP sites from the framework represents a groundbreaking innovation that expands the catalytic potential of existing materials. For catalysts already employing FLP chemistry to dynamically generate products from substrates, a complete mechanistic interpretation requires a thorough examination of the surface electronic properties and the surrounding environment. The hydrogen spillover ability on the Ru-doped FLP surfaces improves conversion efficiency by suppressing hydrogen poisoning at metal sites. In situ H2-H2O conditions enable the production of organic chemicals with excellent activity and selectivity by creating new bifunctional sites via FLP chemistry. By highlighting the novel FLP systems featuring FLP induction and synergistic effects and the selection of advanced characterization techniques to elucidate reaction mechanisms, we hope that this Account will offer innovative strategies for designing and characterizing FLP chemistry in heterogeneous catalysts to the research community.
Read full abstract