A promising class of porous crystalline materials, metal-organic frameworks (MOFs), have recently emerged as a potential material in fabricating mixed matrix membranes (MMMs) for gas separation applications. Their unique chemistry and structural versatility offer substantial advantages over conventional fillers. This review gives an in-depth exploration of MOF chemistry, focusing on strategies to manipulate their adsorption behavior to enhance separation properties. We scrutinize the impact of various MOF-based MMM components, including polymer matrix, MOFs fillers and polymer/filler interface, on the overall gas separation performance. This involves a detailed analysis of key parameters associated with MMM preparation. Additionally, we offer a comprehensive overview of the determining factors in MOF-based MMM development for gas separation, including MOF structure, synthesis, and chemistry. Moreover, the most advances in modification strategies of MOF for CO2 separation, such as a wide variety of hybrid MOFs will be outlined, which opens the door to an improved CO2 separation process. Finally, the gas transport mechanisms of MMMs are thoroughly discussed to understand the factors affecting the gas permeation through the polymer matrix, MOFs and interface between them.
Read full abstract