It is known that micron- and submicron-sized metallic particles are released from the electrode surfaces when a vacuum gap is subjected to a high dc stress. It is also well known that larger particles (> 10 μm) are generated within the interelectrode gap when a vacuum gap is subjected to conditioning or severe prebreakdown current flow. This paper examines the role of such particles in inducing the breakdown of a vacuum gap. While the larger particles induce breakdown by way of a trigger discharge, it is shown that the smaller particles can initiate breakdown because of effects associated with impact. The various effects associated with the high-speed impact of a metallic microparticle on a target electrode, viz., cratering, production of metal vapor, and production of thermally generated plasma and their relative significance on vacuum breakdown, are examined.
Read full abstract