A high current density of 1 kA/cm2 is experimentally realized in enhancement-mode Ga2O3 vertical power metal-insulator field-effect transistors with fin-shaped channels. Comparative analysis shows that the more than doubled current density over the prior art arises from a larger transistor channel width; on the other hand, a wider channel also leads to a more severe drain-induced barrier lowering therefore premature transistor breakdown at zero gate-source bias. The observation of a higher current density in a wider channel confirms that charge trapping in the gate dielectric limits the effective field-effect mobility in these transistor channels, which is about 2× smaller than the electron mobility in the Ga2O3 drift layer. The tradeoff between output-current density and breakdown voltage also depends on the trap density. With minimal trap states, the output current density should remain high while breakdown voltage increases with decreasing fin-channel width.
Read full abstract