Potential toxic chemicals, specifically, polycyclic aromatic hydrocarbons (PAHs), are major sediment contaminants. Herein, green seaweed (Ulva lactuca) was used as a feedstock and pyrolyzed at temperature in the range between 300 and 900 °C. The metal-free carbocatalyst (GSBC) for peroxymonosulfate (PMS) activation to degrade PAHs contaminated sediments was studied. The effects of GSBC‒PMS treatment on microbial community abundance was studied as well. The pyrolysis temperature of GSBC preparation affected the PMS activation performance. Results show that GSBC700 exhibited remarkable catalytic characteristics in PAHs degradation by effective activation of PMS. The results also demonstrated that the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOP) reaction achieved 87% and apparent rate constant (kobs) of 6.3 × 10−2 h−1 of total PAHs degradation in 24 h at 3.3 g/L of GSBC, PMS dose of 1 × 10−4 M, and pH 3.0. The degradation of 2-, 3-, 4-, 5-, and 6-ring PAHs was 84, 83, 83, 80, and 89%, respectively. The synergetic effect established between GSBC and PMS enhanced the formation of ROSs, namely, SO4-, HO, and 1O2, which were major species contributing to PAHs degradation. The synergistic effect of π‒π stacking structure and graphitization of GSBC formed electron shuttle, which contributed to PAHs degradation performance. Microbial community structure analyses in the GSBC‒PMS treated sediments showed that the relative abundance of Lactobacillus_rhamnosus species, most of which belonged to the Lactobacillus genus and Firmicutes phylum, which aided in continuing PAHs biodegradation post GSBC‒PMS treatment. Therefore, GSBC can be a promising carbocatalyst produced via biomass-to-biochar conversion as biowaste-to-energy source used in the SR-CAOP-mediated process for sediment remediation.
Read full abstract