Rubber composites with a high gas barrier and mechanical properties have received considerable attention due to their potential applications. Constructing complex filler networks in a rubber matrix is an effective strategy to simultaneously enhance the gas barrier and mechanical properties. In this work, graphene oxide layered double hydroxide (GO@LDHs) hybrids were obtained by the electrostatic self-assembly method. A unique interspersed and isolated structure was formed in GO@LDHs hybrids due to the chemical interactions between the functional groups on GO sheets and the metal cations on LDH layers. Subsequently, the GO@LDHs hybrids were incorporated into a styrene-butadiene rubber (SBR) matrix using a green latex compounding method. The results showed that the GO@LDHs hybrids were uniformly embedded in the SBR matrix, constructing an overlapped filler network and forming physical bonding points that reduced the free volume of the composites. The electrostatic interactions between GO@LDHs hybrids facilitated energy dissipation during stretching, thereby improving the mechanical performance of the rubber composites. More importantly, the N2 gas permeability and fracture toughness of GO@LDHs/SBR composites decreased by 52.2% and increased by 845%, respectively, compared to those of a pure SBR matrix. The construction of GO@LDHs hybrids offers new insights for designing rubber composites with a high gas barrier and mechanical properties.