Colorectal cancer (CRC) is the second most deadly and the third most diagnosed cancer in both sexes worldwide. CRC pathogenesis is associated with risk factors such as genetics, alcohol, smoking, sedentariness, obesity, unbalanced diets, and gut microbiota dysbiosis. The gut microbiota is the microbial community living in symbiosis in the intestine, in a dynamic balance vital for health. Increasing evidence underscores the influence of specific gut microbiota bacterial species on CRC incidence and pathogenesis. In this regard, conjugated linoleic acid (CLA) metabolites produced by certain gut microbiota have demonstrated an anticarcinogenic effect in CRC, influencing pathways for inflammation, proliferation, and apoptosis. CLA production occurs naturally in the rumen, and human bioavailability is through the consumption of food derived from ruminants. In recent years, biotechnological attempts to increase CLA bioavailability in humans have been unfruitful. Therefore, the conversion of essential dietary linoleic acid to CLA metabolite by specific intestinal bacteria has become a promising process. This article reviews the evidence regarding CLA and CLA-producing bacteria as therapeutic agents against CRC and investigates the best strategy for increasing the yield and bioavailability of CLA. Given the potential and limitations of the present strategies, a new microbiome-based precision nutrition approach based on endogenous CLA production by human gut bacteria is proposed. A literature search in the PubMed and PubMed Central databases identified 794 papers on human gut bacteria associated with CLA production. Of these, 51 studies exploring association consistency were selected. After excluding 19 papers, due to health concerns or discrepancies between studies, 32 papers were selected for analysis, encompassing data for 38 CLA-producing bacteria, such as Bifidobacterium and Lactobacillus species. The information was analyzed by a bioinformatics food recommendation system patented by our research group, Phymofood (EP22382095). This paper presents a new microbiome-based precision nutrition approach targeting CLA-producing gut bacterial species to maximize the anticarcinogenic effect of CLA in CRC.