Increased systemic exposure of the antidepressant venlafaxine and increased risk of side effects has previously been observed in patients with defective CYP2D6 function [poor metabolisers (PMs)]. The aim of this study was to evaluate venlafaxine pharmacokinetics in carriers of one functional and one defective CYP2D6 allele [heterozygous extensive metabolisers (HEMs)]. Data was collected retrospectively from a therapeutic drug-monitoring database. All CYP-genotyped patients with steady-state serum concentration measurements of venlafaxine and metabolites were included in the study. Patients were divided in groups: *1/*1 [homozygous extensive metabolisers (EMs)], *1/*3, *4 or *5 (HEMs) and *4/*4 (PMs). Dose-adjusted serum concentrations of venlafaxine, O-desmethylvenlafaxine, N-desmethylvenlafaxine, and the metabolic ratio (O-desmethylvenlafaxine/venlafaxine) were compared between the different genotype groups. The sum of venlafaxine and O-desmethylvenlafaxine serum concentrations was not significantly different between genotype groups. Metabolic ratio was 50% lower in HEMs (n = 18) than in EMs (n = 20) (p < 0.05). Serum concentration of N-desmethylvenlafaxine was 5.5-fold higher in HEMs (p < 0.01) and 22-fold higher in PMs (p < 0.001) than in EMs. The study showed a shift in the metabolic pathway resulting in substantially higher levels of N-desmethylvenlafaxine in HEMs than in EMs. The metabolic pattern of venlafaxine in HEMs was similar to previous observations in PMs and possibly represents an increased risk of venlafaxine-related side effects in HEM patients.