The growing demand for sustainable natural products to replace harmful synthetic ones requires comprehensive ecotoxicity assessments to ensure their eco-friendly nature. This study explored for the first time the changes in microbial community growth and metabolic profiles from river and natural soil samples exposed to the two structural isomers, thymol (THY) and carvacrol (CARV), utilizing Biolog EcoPlate™ assays and 16S rRNA gene sequencing for taxonomic analysis. In addition, we addressed existing ecotoxicity data gaps for these two compounds by using aquatic (Daphnia magna and Vibrio fischeri) and soil (Eisenia fetida and Allium cepa) indicators. Results show acute toxicity of both CARV and THY on all indicators. V. fischeri (LC50=0.59mg/L)>D. magna (4.75mg/L)>A. cepa (6.47mg/L) for CARV, and V. fischeri (LC50=1.71mg/L)>A. cepa (4.05mg/L)>D. magna (8.13mg/L) for THY. E. fetida showed LC50=7.68mg/kg for THY and 1.04 for CARV. River and soil microbial communities showed resilience, likely because they contain taxa capable of biodegrading these products. No significant growth inhibition effects were observed up to 100mg/L, though substrate utilization decreased at higher concentrations, particularly for polymers and amines in soil microorganisms and polymers in aquatic communities. Soil microorganisms were more affected than aquatic ones, with CARV being more toxic than THY (EC50120h=THY 94.13 and CARV 29.79mg/L in soil microorganisms). These findings suggest that an increase in the consumption of these products and their subsequent ecotoxicity effects from environmental discharge should still be monitored before being ruled out. However, long-term effects are unlikely due to microbial degradation of these natural products, potentially reducing risks to other target species and opening the way for their use as substitutes for commercial antibiotics.
Read full abstract