The aim of this study was firstly to investigate the effect of membrane permeability on the intestinal availability (Fg ) of 10 cytochrome P450 3A4 substrates with differing permeability (Papp ) and metabolic activity (CLint ) using Madin-Darby canine kidney II (MDCKII) cells expressing human CYP3A4 (MDCKII/CYP3A4 cells), and secondly to confirm the essential factors by simulations. A membrane permeation assay using MDCKII/CYP3A4 cells showed a significant correlation between human intestinal extraction ratio (ER) (Eg (=1-Fg )) and in vitro cellular ER (r=0.834). This relationship afforded better predictability of Eg values than the relationship between Eg and CLint,HIM values obtained from human intestinal microsomes (r=0.598). An even stronger correlation was observed between 1-Fa ·Fg and ER (r=0.874). Simulation with a cellular kinetic model indicated that ER is sensitive to changes of PSpassive and CLint values, but not to the intracellular unbound fraction (fu,cell ) or P-gp-mediated efflux (PSP-gp ). It may be concluded that, based on the concentration-time profile of drugs in epithelial cells, transmembrane permeability influences Fg (or ER) and drug exposure time to metabolizing enzymes for P450 substrate.
Read full abstract