Research on traumatic brain injury (TBI) highlights the significance of counteracting its metabolic impact via exogenous fuels to support metabolism and diminish cellular damage. While ethyl pyruvate (EP) treatment shows promise in normalizing cellular metabolism and providing neuroprotection, there is a gap in understanding the precise metabolic pathways involved. Metabolomic analysis of the acute post-injury metabolic effects, with and without EP treatment, aims to deepen our knowledge by identifying and comparing the metabolite profiles, thereby illuminating the injury's effects and EP's therapeutic potential. In the current study, an untargeted metabolomics approach was used to reveal brain metabolism changes in rats 24h after a controlled cortical impact (CCI) injury, with or without EP treatment. Using principal component analysis (PCA), volcano plots, Random Forest and pathway analysis we differentiated the brain metabolomes of CCI and sham injured animals treated with saline (Veh) or EP, identifying key metabolites and pathways affected by injury. Additionally, the effect of EP on the non-injured brain was also explored. PCA showed a clear separation of the four study groups (sham-Veh, CCI-Veh, sham-EP, CCI-EP) based on injury. Following CCI injury (CCI-Veh), 109 metabolites belonging to the amino acid, carbohydrate, lipid, nucleotide, and xenobiotic families exhibited a twofold change at 24h compared to the sham-Veh group, with 93 of these significantly increasing and 16 significantly decreasing (p < 0.05). CCI animals were treated with EP (CCI-EP) showed only 5 metabolites in the carbohydrate, amino acids, peptides, nucleotides, lipids, and xenobiotics super families that exhibited a twofold change, compared to the CCI-Veh group (p < 0.05). In the non-injured brain, EP treatment (sham-EP) resulted in a twofold change in 6 metabolites within the amino acid, peptide, nucleotide, and lipid super families compared to saline treated sham animals (sham-Veh, p < 0.05). This study delineates the unique metabolic signatures resulting from a CCI injury and those related to EP treatment in both the injured and non-injured brain, underscoring the metabolic adaptations to brain injury and the effects of EP. Our analysis uncovers significant shifts in metabolites associated with inflammation, energy metabolism, and neuroprotection after injury, and demonstrates how EP intervention after injury alters metabolites associated with mitigating inflammation and oxidative damage.
Read full abstract