With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. Self-power, multifunctional, and sensitive sensors are one of the key components for the popularization of smart home systems. Herein, a flexoelectric mica crystal is shown to augment the finger touch-driven triboelectric output enough to operate a wireless and multichannel smart home controller. The smart home controller consists of concave mica films, a hand-grip-type vertical mouse, and an Arduino controller. Strain-gradient-dependent contact potential difference measurement and density functional theory calculation show that flexoelectric charge shifts the workfunction and concave bending reduces the effective electron mass in a mica. A portable hand-grip-type flexoelectrically augmented triboelectric nanogenerator (Flexo-TENG) demonstrates the wireless communication of message in real time and the selective operation of home appliances with various functions via a simple finger touch. This work provides important ingredients for the enhanced triboelectric output via flexoelectricity, and for the realization of a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.
Read full abstract