With the growing concern over range anxiety among electric vehicle (EV) owners due to limited battery capacity and sparse charging infrastructure, EV-to-EV (V2V) energy sharing emerges as a crucial solution to extend driving range. Leveraging the vehicular energy network (VEN) enabled by dynamic wireless power transfer (DWPT) technology, energy sharing among EVs in motion becomes feasible. However, the effective establishment of communication and identification of suitable V2V energy sharing pairs pose significant challenges, particularly for EVs with discharging demands. To address this challenge, we propose a new discharging driven energy sharing protocol based on vehicular ad-hoc networks (VANETs). Firstly, we present a routing approach for transmitting discharging information through VANETs, considering key factors such as distance, state of charge, number of neighbor vehicles, and vehicle speed. This routing scheme facilitates efficient relay node selection on road segments and intersections, ensuring optimal communication paths. Subsequently, we formulate a charging requester selection model to identify the most suitable requester for energy sharing. This model optimizes individual utility while accounting for the state of charge of the requesters, ensuring a comprehensive and inclusive approach to V2V energy sharing. Finally, we develop an acknowledgment message transmission scheme to ensure the completion of selection acknowledgment between discharging EVs and charging EVs. This scheme includes provisions for recovery in case of forwarding link failures, ensuring robust communication in dynamic vehicular environments. Extensive simulations conducted using network simulator 2 (NS-2) demonstrate the superior performance of the proposed protocol in terms of packet delivery ratio, end-to-end delay, and overall V2V energy sharing efficiency.
Read full abstract