Abstract

As the popularization of dual ring fieldbus, the optimized dual ring synchronization methods are still in short. The current synchronization methods are generally established in traditional industrial fieldbus, in which transmission is commonly considered in single track, the two-way transmitting cannot take full effect, and would result in unwanted idle load on equipment lines. In stamp-transferring part, the synchronizing algorithm is not properly processed to diminish the latency, so the real-time performance of entire system cannot be ensured. To support the synchronization control of stations in the CNC system, a real-time time synchronization method for dual ring fieldbus in the CNC system is designed in this paper. In this method a synchronizing message transmission scheme based on dual ring architecture and the synchronization algorithm between master and secondary stations are integrated. In the scheme, the clock models of both master and secondary stations are optimized with corresponding modules and the stamp data transmission based on the dual ring fieldbus is devised exclusively, so the transmitting efficiency improves with less idle work. In the algorithm, all the secondary stations can accomplish the consistent state with master station by updating clock discrepancy information in one communication cycle, and it takes the advantage of two-way transmitting and makes the best use of dual ring structure, so the real-time performance of the system can be promoted while retaining the precision of synchronization. To evaluate the performance, the costs of the method and errors during synchronizing are noted and analyzed based on the actual running environment in the industrial fieldbus. The results show that it reduces communication cost and ensures the smoothness of the system with low lag effects under heavy load. The proposed time synchronization method optimizes the architecture of sync message transmission in dual ring fieldbus, and improves the efficiency of time synchronization in the stations of CNC system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call