Abstract A technique used widely to forecast the potential for QLCS mesovortices is known as the “Three Ingredients Method” (3IM). The 3IM states that mesovortices are favored where 1) the QLCS cold pool and ambient low-level shear are said to be nearly balanced or slightly shear dominant, 2) where the component of the 0–3-km wind shear normal to the convective line is ≥30 kt (1 kt ≈ 0.51 m s−1), and 3) where a rear-inflow jet or enhanced outflow causes a surge or bow along the convective line. Despite its widespread use in operational settings, this method has received little evaluation in formal literature. To evaluate the 3IM, radiosonde observations are compared to radar-observed QLCS properties. The distance between the gust front and high reflectivity in the leading convective line (the “U-to-R distance”), the presence of rear-inflow surges, and mesovortices (MVs) were each assessed across 1820 line segments within 50 observed QLCSs. Although 0–3-km line-normal wind shear is statistically different between MV-genesis and null segments, values are ≤30 kt for 44% of MV-genesis segments. The 0–6-km line-normal wind shear also shows strong discrimination between MV-genesis and null segments and displays the best linear relationship of the U-to-R distance (a measure of system balance) among layers tested, although the scatter and overlap in distributions suggest that many factors can impact MV genesis (as expected). Overall, most MVs occur where the U-to-R distance lies between −5 and 5 km in the presence of a rear-inflow surge, along with positive 0–1-km wind shear, 0–3-km wind shear > 10 kt, and 0–6-km wind shear > 20 kt (all line-normal). Significance Statement Near the leading edge of thunderstorm lines, areas of rotation that can produce tornadoes and strong winds (“mesovortices”) often develop rapidly. Despite advances in understanding mesovortices, few operational guidelines exist to anticipate their genesis. One popular method used to forecast mesovortices—the “Three Ingredients Method”—is evaluated in this study. Our work confirms the importance of two of the ingredients—a surge of outflow winds and thunderstorms that stay nearly atop the leading edge of the outflow. However, we find that many mesovortices occur below the threshold of low-level wind shear ascribed by the forecast method. Refinements to the method are suggested, including the favorable distance between the leading edge of the outflow and thunderstorm updrafts and lower bounds of wind shear over multiple layers, below which mesovortices may be unlikely.