To enhance catalytic and thermal stability of Ni nanoparticles for a combined steam and CO2 reforming with CH4 (CSCR), the utilization of an ordered mesoporous Al2O3 support with ∼6 nm of average pore diameter (Ni/m-Al) was proposed in terms of spatial confinement effects of the Ni nanoparticles with the help of successive Al2O3 overlayer protective layers (Ni/m-Al@Al). At an optimal amount of Al2O3 coating layers less than ∼3 wt%, the much higher catalytic activity and stability were observed on the Ni/m-Al@Al(3). The synergy effects of Al2O3 overlayers on the ordered mesoporous Ni/m-Al were mainly attributed to the formation of strongly interacted Ni-Al2O3 interfaces as supported by its higher XPS binding energy in the spatially restricted mesoporous m-Al channels with the protective metal oxide overlayers. Those structures were also responsible for the suppressed migrations of the spatially confined Ni nanoparticles to the outer m-Al surfaces by Al2O3 protective overlayers, which resulted in an excellent long-term stability with small coke depositions by preserving the original Ni nanoparticle sizes.
Read full abstract