A new mesoporous Mn(II)-MOF [Mn2(phen)2(nia)2]∞ with 4-c uninodal net topology and reiterating rectangular channels in its cargo-net like extension was synthesized using π-conjugated phenanthroline (phen) and syn-syn bridging 5-nitroisopthalic acid (nia) linkers. The MOF (1) exhibited phase purity, uniform morphology, photo and thermal stability, and robustness; duly triggered by the exceptional framework rigidity via intermolecular H-bonding and interlayer π-π stacking interactions. The bright-blue luminescence of the MOF nano-dispersion was explored for sensitive, specific and ultrafast detection of trinitrophenol (TNP) with extremely low LOD (90.62 nM), high KSV (18.27×104 M-1) and Kq (4×1014 M-1s-1). The vapor-phase TNP sensing was also accomplished. Additionally, 1 served towards discriminatory, aqueous-phase monitoring of Cr(VI)-oxoanions, depicting LODs: 36.08 and 35.70 ppb; KSV: 3.46×104 and 4.87×104 M-1; Kq: 3.26×1013 M-1s-1 and 4.31×1013 M-1s-1; and response time: 32 and 40s for CrO4 2- and Cr2O7 2- respectively. The quenching mechanisms (i. e., RET, PET, IFE, weak interactions, collisional quenching and π⋅⋅⋅π stacking) was explained from several experimental investigations and theoretical DFT calculations. The recyclable sensing events and quantification from complex environmental matrices with admirable recovery rates and high KSV (13.02-22.44×104; ~6.31-10.98×104 and ~6.60-11.42×104 M-1 for TNP, CrO4 2- and Cr2O7 2-) undoubtedly advocated the consistency of the probe.
Read full abstract