The relation between aggregate characteristics and fracture properties of concrete mixtures is investigated numerically. A homogenization-based multiscale approach is introduced based on objective failure zone averaging for heterogeneous meso-structure, and traction–separation law of fracture process zone (FPZ) instead of phenomenological constitutive model for macro-structure. A rate-dependent anisotropic damage-plastic formulation is employed to reproduce degradation process in the fine-scale from diffuse damage to localized bands, and extended finite element method (X-FEM) is utilized to resemble the localized region as a macro-crack within the coarse-scale. Different aggregate types are used to randomly generate meso-scale representative volume element (RVE) for concrete mixtures, and effect of size and shape of aggregates on mechanical characteristics, and sources of diversity in fracture properties of concrete are addressed.
Read full abstract