The purpose of the presented Artificial Intelligence (AI)-tool was to automatically segment the mandibular molars on panoramic radiographs and extract the molar orientations in order to predict the third molars’ eruption potential. In total, 838 panoramic radiographs were used for training (n = 588) and validation (n = 250) of the network. A fully convolutional neural network with ResNet-101 backbone jointly predicted the molar segmentation maps and an estimate of the orientation lines, which was then iteratively refined by regression on the mesial and distal sides of the segmentation contours. Accuracy was quantified as the fraction of correct angulations (with predefined error intervals) compared to human reference measurements. Performance differences between the network and reference measurements were visually assessed using Bland−Altman plots. The quantitative analysis for automatic molar segmentation resulted in mean IoUs approximating 90%. Mean Hausdorff distances were lowest for first and second molars. The network angulation measurements reached accuracies of 79.7% [−2.5°; 2.5°] and 98.1% [−5°; 5°], combined with a clinically significant reduction in user-time of >53%. In conclusion, this study validated a new and unique AI-driven tool for fast, accurate, and consistent automated measurement of molar angulations on panoramic radiographs. Complementing the dental practitioner with accurate AI-tools will facilitate and optimize dental care and synergistically lead to ever-increasing diagnostic accuracies.