A procedure for computing static transmission errors and tooth load sharing was developed for low and high contact ratio internal and external spur gears. A suitable optimization algorithm was used to minimize any combination of the harmonics of gear mesh frequency components of the static transmission error. Different combinations of tip and root relief may be used to achieve optimization. These include varying the starting point of relief and varying the magnitude of relief, and selecting the gear and/or the pinion teeth to be tip and/or root-relieved. Also, there exists an option for using either linear or parabolic relief. In addition to the presentation of optimal profile modifications, the effects of off-design loads, nonoptimum modifications, and random spacing errors are presented.