This study investigates fixed and moving mesh methodologies for modeling liquid metal-free surface deformation during the induction melting process. The numerical method employs robust coupling of magnetic fields with the hydrodynamics of the turbulent stirring of liquid metal. Free surface tracking is implemented using the fixed mesh level set (LS) and the moving mesh arbitrary Lagrangian-Eulerian (ALE) formulation. The model's geometry and operating parameters are designed to replicate a semi-industrial induction melting furnace. Six case studies are analyzed under varying melt masses and coil power levels, with validation performed by comparing experimentally measured free surface profiles and magnetic field distributions. The melt's stirring velocity and recirculation patterns are also examined. The comparative analysis determines an improved performance of the ALE method, convergence, and computational efficiency. Experimental validation confirms that the ALE method reproduces the free surface shape more precisely, avoiding unrealistic topological changes observed in LS simulations. The ALE method faces numerical convergence difficulties for high-power and low-mass filling cases due to mesh element distortion. The proposed ALE-based simulation procedure is a potential numerical optimization tool for enhancing induction melting processes, offering scalable and robust solutions for industrial applications.
Read full abstract